

DS502E-400

- ▸ Kombi-Ableiter Typ 1+2 auf Varistor Basis
- Ableitfähigkeit pro Pol: Imax= 200 kA; Iimp= 50 kA
- Figure 1. Erzeugt keinen (Netz-) Folgestrom (Kurzschlussstrom)
- > Sichere Trennvorrichtung
- Fernsignalisierung optional
- Frfüllt die Normen IEC 61643-11 und EN 61643-11
- 🕨 Ideal für BSK I unter 'worst-case' Bedingungen

- 67 -			L		N	
90		DSSOOE			DSSO0E	
	9	9	8	8 8	- 8	0
				180		-
L/N	1 ((L/N)	L/N	(L/N	1)	
Marie de la companya della companya	♦	te !		Ft te		
V: Hoch-Energie Varistor Ft: Thermische Sicherung C: Fernsignalisierung t°: Thermische Trennvorrichtung MI: Fehlersignalisierung						
IV.	ı. ren	iersig	nansie	nung		

ELEKTRISCHE EIGENSCHAFTEN					
SPD Typ	IEC	1+2			
Anwendung z.B. 230/400		AC-Stromversorgung			
AC-Netzform TNS or TNC or TT or IT		П			
Nennspannung	Un	400 Vac			
Höchste Dauerspannung AC	Uc	440 Vac			
max. Laststrom	IL	100 A			
TOV-Spannung (L-N) 5sec. Charakteristik TOV Fest	UT	580 Vac Festigkeit			
TOV-Spannung (L-N) 120min. Charakteristik TOV Fest oder Sicher	UT	770 Vac Sicheres Verhalten			
Folgestrom, Kurzschlußstrom nach dem Ableitvorgang	lf	Keiner			
Nennableitstoßstrom (8/20) μs /Pol 15 Impulse mit In (8/20) μs	In	50 kA			
max. Ableitstoßstrom max. Ableitfähigkeit 8/20 µs pro Pol	lmax	200 kA			
Blitzstoßstrom (10/350)μs /Pol max . Blitzableitfähigkeit pro Pol (10/350)μs	limp	50 kA			
Gesamt- Blitzstoßstrom (10/350)µs Gesamtblitzstromableitfähigkeit 1x (10/350)µs	Itotal	100 kA			
spezifische Energie pro Pol	W/R	156 kJ/ohm			
Anschlusspfade		L/PE und N/PE			
Schutzmodus Schutzmodi- common und/oder differential		СМ			
Schutzpegel N/PE @ In (8/20µs)	Up N/PE	2.2 kV			
Schutzpegel L/PE @ In (8/20µs)	Up L/PE	2.2 kV			
Kurzschlussfestigkeit	Isccr	50 000 A			
MECHANISCHE EIGENSCHAFTEN					
Technologie		MOV			
Ableiterkonfiguration		1 Phase+N			
Anschlussart		Fahrstuhlklemme 6-35 mm² (50 mm²) / Kammschiene			
Bauart		Monoblock-Gehäuse für Hutschienenmontage			
Montage auf		35 mm Hutschiene			
Gehäusewerkstoff		Thermoplastik UL94 V-0			
Temperaturbereich	Tu	-40/+85°C			
Schutzart		IP20			
Ausfallverhalten		Trennung vom Netz; optische Anzeige			
Fehlersignalisierung		1 mechanische Anzeige je Pol rot			
Fernmeldesignalisierung (FS)		Potentialfreier Wechsler			
Einbaumaße		Siehe Maßbild			
Trennvorrichtungen					
thermische Trennvorrichtung		Intern			
Fehlerstromschutzschalter		Typ "S" oder zeitverzögert			
Vorsicherung max.		500 A (gL/gG)			
NORMEN					
Normkonform nach		IEC 61643-11 / DIN EN 61643-11 / UL1449 ed.5			
Zulassungen		LEG STOTO 11 / DIRECT OTOTO 11 / OLITTO EG.O			
Artikel Nummer					
64028					

